Metamath Proof Explorer


Theorem zsum

Description: Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019)

Ref Expression
Hypotheses zsum.1 Z=M
zsum.2 φM
zsum.3 φAZ
zsum.4 φkZFk=ifkAB0
zsum.5 φkAB
Assertion zsum φkAB=seqM+F

Proof

Step Hyp Ref Expression
1 zsum.1 Z=M
2 zsum.2 φM
3 zsum.3 φAZ
4 zsum.4 φkZFk=ifkAB0
5 zsum.5 φkAB
6 eleq1w n=inAiA
7 csbeq1 n=in/kB=i/kB
8 6 7 ifbieq1d n=iifnAn/kB0=ifiAi/kB0
9 8 cbvmptv nifnAn/kB0=iifiAi/kB0
10 simpll φmAmφ
11 5 ralrimiva φkAB
12 nfcsb1v _ki/kB
13 12 nfel1 ki/kB
14 csbeq1a k=iB=i/kB
15 14 eleq1d k=iBi/kB
16 13 15 rspc iAkABi/kB
17 11 16 syl5 iAφi/kB
18 10 17 mpan9 φmAmiAi/kB
19 simplr φmAmm
20 2 ad2antrr φmAmM
21 simpr φmAmAm
22 3 1 sseqtrdi φAM
23 22 ad2antrr φmAmAM
24 9 18 19 20 21 23 sumrb φmAmseqm+nifnAn/kB0xseqM+nifnAn/kB0x
25 24 biimpd φmAmseqm+nifnAn/kB0xseqM+nifnAn/kB0x
26 25 expimpd φmAmseqm+nifnAn/kB0xseqM+nifnAn/kB0x
27 26 rexlimdva φmAmseqm+nifnAn/kB0xseqM+nifnAn/kB0x
28 3 ad2antrr φmf:1m1-1 ontoAAZ
29 uzssz M
30 1 29 eqsstri Z
31 zssre
32 30 31 sstri Z
33 ltso <Or
34 soss Z<Or<OrZ
35 32 33 34 mp2 <OrZ
36 soss AZ<OrZ<OrA
37 28 35 36 mpisyl φmf:1m1-1 ontoA<OrA
38 fzfi 1mFin
39 ovex 1mV
40 39 f1oen f:1m1-1 ontoA1mA
41 40 adantl φmf:1m1-1 ontoA1mA
42 41 ensymd φmf:1m1-1 ontoAA1m
43 enfii 1mFinA1mAFin
44 38 42 43 sylancr φmf:1m1-1 ontoAAFin
45 fz1iso <OrAAFinggIsom<,<1AA
46 37 44 45 syl2anc φmf:1m1-1 ontoAggIsom<,<1AA
47 simpll φmf:1m1-1 ontoAgIsom<,<1AAφ
48 47 17 mpan9 φmf:1m1-1 ontoAgIsom<,<1AAiAi/kB
49 fveq2 n=jfn=fj
50 49 csbeq1d n=jfn/kB=fj/kB
51 csbcow fj/ii/kB=fj/kB
52 50 51 eqtr4di n=jfn/kB=fj/ii/kB
53 52 cbvmptv nfn/kB=jfj/ii/kB
54 eqid jgj/ii/kB=jgj/ii/kB
55 simplr φmf:1m1-1 ontoAgIsom<,<1AAm
56 2 ad2antrr φmf:1m1-1 ontoAgIsom<,<1AAM
57 22 ad2antrr φmf:1m1-1 ontoAgIsom<,<1AAAM
58 simprl φmf:1m1-1 ontoAgIsom<,<1AAf:1m1-1 ontoA
59 simprr φmf:1m1-1 ontoAgIsom<,<1AAgIsom<,<1AA
60 9 48 53 54 55 56 57 58 59 summolem2a φmf:1m1-1 ontoAgIsom<,<1AAseqM+nifnAn/kB0seq1+nfn/kBm
61 60 expr φmf:1m1-1 ontoAgIsom<,<1AAseqM+nifnAn/kB0seq1+nfn/kBm
62 61 exlimdv φmf:1m1-1 ontoAggIsom<,<1AAseqM+nifnAn/kB0seq1+nfn/kBm
63 46 62 mpd φmf:1m1-1 ontoAseqM+nifnAn/kB0seq1+nfn/kBm
64 breq2 x=seq1+nfn/kBmseqM+nifnAn/kB0xseqM+nifnAn/kB0seq1+nfn/kBm
65 63 64 syl5ibrcom φmf:1m1-1 ontoAx=seq1+nfn/kBmseqM+nifnAn/kB0x
66 65 expimpd φmf:1m1-1 ontoAx=seq1+nfn/kBmseqM+nifnAn/kB0x
67 66 exlimdv φmff:1m1-1 ontoAx=seq1+nfn/kBmseqM+nifnAn/kB0x
68 67 rexlimdva φmff:1m1-1 ontoAx=seq1+nfn/kBmseqM+nifnAn/kB0x
69 27 68 jaod φmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBmseqM+nifnAn/kB0x
70 2 adantr φseqM+nifnAn/kB0xM
71 22 adantr φseqM+nifnAn/kB0xAM
72 simpr φseqM+nifnAn/kB0xseqM+nifnAn/kB0x
73 fveq2 m=Mm=M
74 73 sseq2d m=MAmAM
75 seqeq1 m=Mseqm+nifnAn/kB0=seqM+nifnAn/kB0
76 75 breq1d m=Mseqm+nifnAn/kB0xseqM+nifnAn/kB0x
77 74 76 anbi12d m=MAmseqm+nifnAn/kB0xAMseqM+nifnAn/kB0x
78 77 rspcev MAMseqM+nifnAn/kB0xmAmseqm+nifnAn/kB0x
79 70 71 72 78 syl12anc φseqM+nifnAn/kB0xmAmseqm+nifnAn/kB0x
80 79 orcd φseqM+nifnAn/kB0xmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
81 80 ex φseqM+nifnAn/kB0xmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
82 69 81 impbid φmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBmseqM+nifnAn/kB0x
83 simpr φjMjM
84 29 83 sselid φjMj
85 83 1 eleqtrrdi φjMjZ
86 4 ralrimiva φkZFk=ifkAB0
87 86 adantr φjMkZFk=ifkAB0
88 nfcsb1v _kj/kifkAB0
89 88 nfeq2 kFj=j/kifkAB0
90 fveq2 k=jFk=Fj
91 csbeq1a k=jifkAB0=j/kifkAB0
92 90 91 eqeq12d k=jFk=ifkAB0Fj=j/kifkAB0
93 89 92 rspc jZkZFk=ifkAB0Fj=j/kifkAB0
94 85 87 93 sylc φjMFj=j/kifkAB0
95 fvex FjV
96 94 95 eqeltrrdi φjMj/kifkAB0V
97 nfcv _nifkAB0
98 nfv knA
99 nfcsb1v _kn/kB
100 nfcv _k0
101 98 99 100 nfif _kifnAn/kB0
102 eleq1w k=nkAnA
103 csbeq1a k=nB=n/kB
104 102 103 ifbieq1d k=nifkAB0=ifnAn/kB0
105 97 101 104 cbvmpt kifkAB0=nifnAn/kB0
106 105 eqcomi nifnAn/kB0=kifkAB0
107 106 fvmpts jj/kifkAB0VnifnAn/kB0j=j/kifkAB0
108 84 96 107 syl2anc φjMnifnAn/kB0j=j/kifkAB0
109 108 94 eqtr4d φjMnifnAn/kB0j=Fj
110 2 109 seqfeq φseqM+nifnAn/kB0=seqM+F
111 110 breq1d φseqM+nifnAn/kB0xseqM+Fx
112 82 111 bitrd φmAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBmseqM+Fx
113 112 iotabidv φιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm=ιx|seqM+Fx
114 df-sum kAB=ιx|mAmseqm+nifnAn/kB0xmff:1m1-1 ontoAx=seq1+nfn/kBm
115 df-fv seqM+F=ιx|seqM+Fx
116 113 114 115 3eqtr4g φkAB=seqM+F