Metamath Proof Explorer


Theorem fvmpts

Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis fvmpts.1 F = x C B
Assertion fvmpts A C A / x B V F A = A / x B

Proof

Step Hyp Ref Expression
1 fvmpts.1 F = x C B
2 csbeq1 y = A y / x B = A / x B
3 nfcv _ y B
4 nfcsb1v _ x y / x B
5 csbeq1a x = y B = y / x B
6 3 4 5 cbvmpt x C B = y C y / x B
7 1 6 eqtri F = y C y / x B
8 2 7 fvmptg A C A / x B V F A = A / x B