Metamath Proof Explorer


Theorem fvmpts

Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis fvmpts.1 F=xCB
Assertion fvmpts ACA/xBVFA=A/xB

Proof

Step Hyp Ref Expression
1 fvmpts.1 F=xCB
2 csbeq1 y=Ay/xB=A/xB
3 nfcv _yB
4 nfcsb1v _xy/xB
5 csbeq1a x=yB=y/xB
6 3 4 5 cbvmpt xCB=yCy/xB
7 1 6 eqtri F=yCy/xB
8 2 7 fvmptg ACA/xBVFA=A/xB