Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvmpts.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) | |
Assertion | fvmpts | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpts.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) | |
2 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
3 | nfcv | ⊢ Ⅎ 𝑦 𝐵 | |
4 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
5 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
6 | 3 4 5 | cbvmpt | ⊢ ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐶 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
7 | 1 6 | eqtri | ⊢ 𝐹 = ( 𝑦 ∈ 𝐶 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
8 | 2 7 | fvmptg | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |