Metamath Proof Explorer


Theorem fvmpts

Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis fvmpts.1 𝐹 = ( 𝑥𝐶𝐵 )
Assertion fvmpts ( ( 𝐴𝐶 𝐴 / 𝑥 𝐵𝑉 ) → ( 𝐹𝐴 ) = 𝐴 / 𝑥 𝐵 )

Proof

Step Hyp Ref Expression
1 fvmpts.1 𝐹 = ( 𝑥𝐶𝐵 )
2 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
3 nfcv 𝑦 𝐵
4 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
5 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
6 3 4 5 cbvmpt ( 𝑥𝐶𝐵 ) = ( 𝑦𝐶 𝑦 / 𝑥 𝐵 )
7 1 6 eqtri 𝐹 = ( 𝑦𝐶 𝑦 / 𝑥 𝐵 )
8 2 7 fvmptg ( ( 𝐴𝐶 𝐴 / 𝑥 𝐵𝑉 ) → ( 𝐹𝐴 ) = 𝐴 / 𝑥 𝐵 )