Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvmpts.1 | |- F = ( x e. C |-> B ) |
|
Assertion | fvmpts | |- ( ( A e. C /\ [_ A / x ]_ B e. V ) -> ( F ` A ) = [_ A / x ]_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmpts.1 | |- F = ( x e. C |-> B ) |
|
2 | csbeq1 | |- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
|
3 | nfcv | |- F/_ y B |
|
4 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
5 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
6 | 3 4 5 | cbvmpt | |- ( x e. C |-> B ) = ( y e. C |-> [_ y / x ]_ B ) |
7 | 1 6 | eqtri | |- F = ( y e. C |-> [_ y / x ]_ B ) |
8 | 2 7 | fvmptg | |- ( ( A e. C /\ [_ A / x ]_ B e. V ) -> ( F ` A ) = [_ A / x ]_ B ) |