Metamath Proof Explorer


Theorem fvmpts

Description: Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis fvmpts.1
|- F = ( x e. C |-> B )
Assertion fvmpts
|- ( ( A e. C /\ [_ A / x ]_ B e. V ) -> ( F ` A ) = [_ A / x ]_ B )

Proof

Step Hyp Ref Expression
1 fvmpts.1
 |-  F = ( x e. C |-> B )
2 csbeq1
 |-  ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B )
3 nfcv
 |-  F/_ y B
4 nfcsb1v
 |-  F/_ x [_ y / x ]_ B
5 csbeq1a
 |-  ( x = y -> B = [_ y / x ]_ B )
6 3 4 5 cbvmpt
 |-  ( x e. C |-> B ) = ( y e. C |-> [_ y / x ]_ B )
7 1 6 eqtri
 |-  F = ( y e. C |-> [_ y / x ]_ B )
8 2 7 fvmptg
 |-  ( ( A e. C /\ [_ A / x ]_ B e. V ) -> ( F ` A ) = [_ A / x ]_ B )