Metamath Proof Explorer


Theorem csbeq1

Description: Analogue of dfsbcq for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbeq1
|- ( A = B -> [_ A / x ]_ C = [_ B / x ]_ C )

Proof

Step Hyp Ref Expression
1 dfsbcq
 |-  ( A = B -> ( [. A / x ]. y e. C <-> [. B / x ]. y e. C ) )
2 1 abbidv
 |-  ( A = B -> { y | [. A / x ]. y e. C } = { y | [. B / x ]. y e. C } )
3 df-csb
 |-  [_ A / x ]_ C = { y | [. A / x ]. y e. C }
4 df-csb
 |-  [_ B / x ]_ C = { y | [. B / x ]. y e. C }
5 2 3 4 3eqtr4g
 |-  ( A = B -> [_ A / x ]_ C = [_ B / x ]_ C )