Description: Analogue of dfsbcq for proper substitution into a class. (Contributed by NM, 10-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | csbeq1 | |- ( A = B -> [_ A / x ]_ C = [_ B / x ]_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq | |- ( A = B -> ( [. A / x ]. y e. C <-> [. B / x ]. y e. C ) ) |
|
2 | 1 | abbidv | |- ( A = B -> { y | [. A / x ]. y e. C } = { y | [. B / x ]. y e. C } ) |
3 | df-csb | |- [_ A / x ]_ C = { y | [. A / x ]. y e. C } |
|
4 | df-csb | |- [_ B / x ]_ C = { y | [. B / x ]. y e. C } |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> [_ A / x ]_ C = [_ B / x ]_ C ) |