Metamath Proof Explorer


Theorem abbidv

Description: Equivalent wff's yield equal class abstractions (deduction form). (Contributed by NM, 10-Aug-1993) Avoid ax-12 , based on an idea of Steven Nguyen. (Revised by Wolf Lammen, 6-May-2023)

Ref Expression
Hypothesis abbidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion abbidv
|- ( ph -> { x | ps } = { x | ch } )

Proof

Step Hyp Ref Expression
1 abbidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 alrimiv
 |-  ( ph -> A. x ( ps <-> ch ) )
3 abbi1
 |-  ( A. x ( ps <-> ch ) -> { x | ps } = { x | ch } )
4 2 3 syl
 |-  ( ph -> { x | ps } = { x | ch } )