Metamath Proof Explorer


Definition df-fin

Description: Define the (proper) class of all finite sets. Similar to Definition 10.29 of TakeutiZaring p. 91, whose "Fin(a)" corresponds to our " a e. Fin ". This definition is meaningful whether or not we accept the Axiom of Infinity ax-inf2 . If we accept Infinity, we can also express A e. Fin by A ~< _om (Theorem isfinite .) (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion df-fin Fin=x|yωxy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfn classFin
1 vx setvarx
2 vy setvary
3 com classω
4 1 cv setvarx
5 cen class
6 2 cv setvary
7 4 6 5 wbr wffxy
8 7 2 3 wrex wffyωxy
9 8 1 cab classx|yωxy
10 0 9 wceq wffFin=x|yωxy