Metamath Proof Explorer


Theorem cbvmptv

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013) Add disjoint variable condition to avoid auxiliary axioms . See cbvmptvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Nov-2024)

Ref Expression
Hypothesis cbvmptv.1 x=yB=C
Assertion cbvmptv xAB=yAC

Proof

Step Hyp Ref Expression
1 cbvmptv.1 x=yB=C
2 eleq1w x=yxAyA
3 1 eqeq2d x=yz=Bz=C
4 2 3 anbi12d x=yxAz=ByAz=C
5 4 cbvopab1v xz|xAz=B=yz|yAz=C
6 df-mpt xAB=xz|xAz=B
7 df-mpt yAC=yz|yAz=C
8 5 6 7 3eqtr4i xAB=yAC