Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013) Add disjoint variable condition to avoid auxiliary axioms . See cbvmptvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvmptv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
Assertion | cbvmptv | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvmptv.1 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
2 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
3 | 1 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) ) |
4 | 2 3 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) ) ) |
5 | 4 | cbvopab1v | ⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
6 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } | |
7 | df-mpt | ⊢ ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } | |
8 | 5 6 7 | 3eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) |