Metamath Proof Explorer


Theorem cbvopab1v

Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003) (Proof shortened by Eric Schmidt, 4-Apr-2007) Reduce axiom usage. (Revised by Gino Giotto, 17-Nov-2024)

Ref Expression
Hypothesis cbvopab1v.1 ( 𝑥 = 𝑧 → ( 𝜑𝜓 ) )
Assertion cbvopab1v { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝜓 }

Proof

Step Hyp Ref Expression
1 cbvopab1v.1 ( 𝑥 = 𝑧 → ( 𝜑𝜓 ) )
2 opeq1 ( 𝑥 = 𝑧 → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑧 , 𝑦 ⟩ )
3 2 eqeq2d ( 𝑥 = 𝑧 → ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑤 = ⟨ 𝑧 , 𝑦 ⟩ ) )
4 3 1 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( 𝑤 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝜓 ) ) )
5 4 exbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑤 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝜓 ) ) )
6 5 cbvexvw ( ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑧𝑦 ( 𝑤 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝜓 ) )
7 6 abbii { 𝑤 ∣ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } = { 𝑤 ∣ ∃ 𝑧𝑦 ( 𝑤 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝜓 ) }
8 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑤 ∣ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) }
9 df-opab { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝜓 } = { 𝑤 ∣ ∃ 𝑧𝑦 ( 𝑤 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝜓 ) }
10 7 8 9 3eqtr4i { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝜓 }