Step |
Hyp |
Ref |
Expression |
1 |
|
cbvopab1v.1 |
|- ( x = z -> ( ph <-> ps ) ) |
2 |
|
opeq1 |
|- ( x = z -> <. x , y >. = <. z , y >. ) |
3 |
2
|
eqeq2d |
|- ( x = z -> ( w = <. x , y >. <-> w = <. z , y >. ) ) |
4 |
3 1
|
anbi12d |
|- ( x = z -> ( ( w = <. x , y >. /\ ph ) <-> ( w = <. z , y >. /\ ps ) ) ) |
5 |
4
|
exbidv |
|- ( x = z -> ( E. y ( w = <. x , y >. /\ ph ) <-> E. y ( w = <. z , y >. /\ ps ) ) ) |
6 |
5
|
cbvexvw |
|- ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ ps ) ) |
7 |
6
|
abbii |
|- { w | E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ ps ) } |
8 |
|
df-opab |
|- { <. x , y >. | ph } = { w | E. x E. y ( w = <. x , y >. /\ ph ) } |
9 |
|
df-opab |
|- { <. z , y >. | ps } = { w | E. z E. y ( w = <. z , y >. /\ ps ) } |
10 |
7 8 9
|
3eqtr4i |
|- { <. x , y >. | ph } = { <. z , y >. | ps } |