Metamath Proof Explorer


Theorem cbvopab1v

Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003) (Proof shortened by Eric Schmidt, 4-Apr-2007) Reduce axiom usage. (Revised by Gino Giotto, 17-Nov-2024)

Ref Expression
Hypothesis cbvopab1v.1
|- ( x = z -> ( ph <-> ps ) )
Assertion cbvopab1v
|- { <. x , y >. | ph } = { <. z , y >. | ps }

Proof

Step Hyp Ref Expression
1 cbvopab1v.1
 |-  ( x = z -> ( ph <-> ps ) )
2 opeq1
 |-  ( x = z -> <. x , y >. = <. z , y >. )
3 2 eqeq2d
 |-  ( x = z -> ( w = <. x , y >. <-> w = <. z , y >. ) )
4 3 1 anbi12d
 |-  ( x = z -> ( ( w = <. x , y >. /\ ph ) <-> ( w = <. z , y >. /\ ps ) ) )
5 4 exbidv
 |-  ( x = z -> ( E. y ( w = <. x , y >. /\ ph ) <-> E. y ( w = <. z , y >. /\ ps ) ) )
6 5 cbvexvw
 |-  ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. z E. y ( w = <. z , y >. /\ ps ) )
7 6 abbii
 |-  { w | E. x E. y ( w = <. x , y >. /\ ph ) } = { w | E. z E. y ( w = <. z , y >. /\ ps ) }
8 df-opab
 |-  { <. x , y >. | ph } = { w | E. x E. y ( w = <. x , y >. /\ ph ) }
9 df-opab
 |-  { <. z , y >. | ps } = { w | E. z E. y ( w = <. z , y >. /\ ps ) }
10 7 8 9 3eqtr4i
 |-  { <. x , y >. | ph } = { <. z , y >. | ps }