Metamath Proof Explorer


Theorem nfif

Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Hypotheses nfif.1 xφ
nfif.2 _xA
nfif.3 _xB
Assertion nfif _xifφAB

Proof

Step Hyp Ref Expression
1 nfif.1 xφ
2 nfif.2 _xA
3 nfif.3 _xB
4 1 a1i xφ
5 2 a1i _xA
6 3 a1i _xB
7 4 5 6 nfifd _xifφAB
8 7 mptru _xifφAB