Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
ifeq1da
Next ⟩
ifeq2da
Metamath Proof Explorer
Ascii
Unicode
Theorem
ifeq1da
Description:
Conditional equality.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Hypothesis
ifeq1da.1
⊢
φ
∧
ψ
→
A
=
B
Assertion
ifeq1da
⊢
φ
→
if
ψ
A
C
=
if
ψ
B
C
Proof
Step
Hyp
Ref
Expression
1
ifeq1da.1
⊢
φ
∧
ψ
→
A
=
B
2
1
ifeq1d
⊢
φ
∧
ψ
→
if
ψ
A
C
=
if
ψ
B
C
3
iffalse
⊢
¬
ψ
→
if
ψ
A
C
=
C
4
iffalse
⊢
¬
ψ
→
if
ψ
B
C
=
C
5
3
4
eqtr4d
⊢
¬
ψ
→
if
ψ
A
C
=
if
ψ
B
C
6
5
adantl
⊢
φ
∧
¬
ψ
→
if
ψ
A
C
=
if
ψ
B
C
7
2
6
pm2.61dan
⊢
φ
→
if
ψ
A
C
=
if
ψ
B
C