Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ifeq1da.1 | |- ( ( ph /\ ps ) -> A = B ) |
|
| Assertion | ifeq1da | |- ( ph -> if ( ps , A , C ) = if ( ps , B , C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1da.1 | |- ( ( ph /\ ps ) -> A = B ) |
|
| 2 | 1 | ifeq1d | |- ( ( ph /\ ps ) -> if ( ps , A , C ) = if ( ps , B , C ) ) |
| 3 | iffalse | |- ( -. ps -> if ( ps , A , C ) = C ) |
|
| 4 | iffalse | |- ( -. ps -> if ( ps , B , C ) = C ) |
|
| 5 | 3 4 | eqtr4d | |- ( -. ps -> if ( ps , A , C ) = if ( ps , B , C ) ) |
| 6 | 5 | adantl | |- ( ( ph /\ -. ps ) -> if ( ps , A , C ) = if ( ps , B , C ) ) |
| 7 | 2 6 | pm2.61dan | |- ( ph -> if ( ps , A , C ) = if ( ps , B , C ) ) |