Metamath Proof Explorer


Theorem ifeq2da

Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis ifeq2da.1 φ¬ψA=B
Assertion ifeq2da φifψCA=ifψCB

Proof

Step Hyp Ref Expression
1 ifeq2da.1 φ¬ψA=B
2 iftrue ψifψCA=C
3 iftrue ψifψCB=C
4 2 3 eqtr4d ψifψCA=ifψCB
5 4 adantl φψifψCA=ifψCB
6 1 ifeq2d φ¬ψifψCA=ifψCB
7 5 6 pm2.61dan φifψCA=ifψCB