Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality The conditional operator for classes nfif  
				
		 
		
			
		 
		Description:   Bound-variable hypothesis builder for a conditional operator.
       (Contributed by NM , 16-Feb-2005)   (Proof shortened by Andrew Salmon , 26-Jun-2011) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfif.1 ⊢  Ⅎ 𝑥  𝜑   
					
						nfif.2 ⊢  Ⅎ  𝑥  𝐴   
					
						nfif.3 ⊢  Ⅎ  𝑥  𝐵   
				
					Assertion 
					nfif ⊢   Ⅎ  𝑥  if ( 𝜑  ,  𝐴  ,  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfif.1 ⊢  Ⅎ 𝑥  𝜑   
						
							2 
								
							 
							nfif.2 ⊢  Ⅎ  𝑥  𝐴   
						
							3 
								
							 
							nfif.3 ⊢  Ⅎ  𝑥  𝐵   
						
							4 
								1 
							 
							a1i ⊢  ( ⊤  →  Ⅎ 𝑥  𝜑  )  
						
							5 
								2 
							 
							a1i ⊢  ( ⊤  →  Ⅎ  𝑥  𝐴  )  
						
							6 
								3 
							 
							a1i ⊢  ( ⊤  →  Ⅎ  𝑥  𝐵  )  
						
							7 
								4  5  6 
							 
							nfifd ⊢  ( ⊤  →  Ⅎ  𝑥  if ( 𝜑  ,  𝐴  ,  𝐵  ) )  
						
							8 
								7 
							 
							mptru ⊢  Ⅎ  𝑥  if ( 𝜑  ,  𝐴  ,  𝐵  )