Metamath Proof Explorer


Theorem sumrb

Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 9-Apr-2014)

Ref Expression
Hypotheses summo.1 F=kifkAB0
summo.2 φkAB
sumrb.4 φM
sumrb.5 φN
sumrb.6 φAM
sumrb.7 φAN
Assertion sumrb φseqM+FCseqN+FC

Proof

Step Hyp Ref Expression
1 summo.1 F=kifkAB0
2 summo.2 φkAB
3 sumrb.4 φM
4 sumrb.5 φN
5 sumrb.6 φAM
6 sumrb.7 φAN
7 4 adantr φNMN
8 seqex seqM+FV
9 climres NseqM+FVseqM+FNCseqM+FC
10 7 8 9 sylancl φNMseqM+FNCseqM+FC
11 2 adantlr φNMkAB
12 simpr φNMNM
13 1 11 12 sumrblem φNMANseqM+FN=seqN+F
14 6 13 mpidan φNMseqM+FN=seqN+F
15 14 breq1d φNMseqM+FNCseqN+FC
16 10 15 bitr3d φNMseqM+FCseqN+FC
17 2 adantlr φMNkAB
18 simpr φMNMN
19 1 17 18 sumrblem φMNAMseqN+FM=seqM+F
20 5 19 mpidan φMNseqN+FM=seqM+F
21 20 breq1d φMNseqN+FMCseqM+FC
22 3 adantr φMNM
23 seqex seqN+FV
24 climres MseqN+FVseqN+FMCseqN+FC
25 22 23 24 sylancl φMNseqN+FMCseqN+FC
26 21 25 bitr3d φMNseqM+FCseqN+FC
27 uztric MNNMMN
28 3 4 27 syl2anc φNMMN
29 16 26 28 mpjaodan φseqM+FCseqN+FC