Metamath Proof Explorer


Theorem sumrb

Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 9-Apr-2014)

Ref Expression
Hypotheses summo.1 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 0 ) )
summo.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
sumrb.4 ( 𝜑𝑀 ∈ ℤ )
sumrb.5 ( 𝜑𝑁 ∈ ℤ )
sumrb.6 ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
sumrb.7 ( 𝜑𝐴 ⊆ ( ℤ𝑁 ) )
Assertion sumrb ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 summo.1 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘𝐴 , 𝐵 , 0 ) )
2 summo.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
3 sumrb.4 ( 𝜑𝑀 ∈ ℤ )
4 sumrb.5 ( 𝜑𝑁 ∈ ℤ )
5 sumrb.6 ( 𝜑𝐴 ⊆ ( ℤ𝑀 ) )
6 sumrb.7 ( 𝜑𝐴 ⊆ ( ℤ𝑁 ) )
7 4 adantr ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) → 𝑁 ∈ ℤ )
8 seqex seq 𝑀 ( + , 𝐹 ) ∈ V
9 climres ( ( 𝑁 ∈ ℤ ∧ seq 𝑀 ( + , 𝐹 ) ∈ V ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ) )
10 7 8 9 sylancl ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ) )
11 2 adantlr ( ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) ∧ 𝑘𝐴 ) → 𝐵 ∈ ℂ )
12 simpr ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) → 𝑁 ∈ ( ℤ𝑀 ) )
13 1 11 12 sumrblem ( ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) ∧ 𝐴 ⊆ ( ℤ𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) )
14 6 13 mpidan ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) )
15 14 breq1d ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ𝑁 ) ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) )
16 10 15 bitr3d ( ( 𝜑𝑁 ∈ ( ℤ𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) )
17 2 adantlr ( ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) ∧ 𝑘𝐴 ) → 𝐵 ∈ ℂ )
18 simpr ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → 𝑀 ∈ ( ℤ𝑁 ) )
19 1 17 18 sumrblem ( ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) ∧ 𝐴 ⊆ ( ℤ𝑀 ) ) → ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ𝑀 ) ) = seq 𝑀 ( + , 𝐹 ) )
20 5 19 mpidan ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ𝑀 ) ) = seq 𝑀 ( + , 𝐹 ) )
21 20 breq1d ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → ( ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ𝑀 ) ) ⇝ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ) )
22 3 adantr ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → 𝑀 ∈ ℤ )
23 seqex seq 𝑁 ( + , 𝐹 ) ∈ V
24 climres ( ( 𝑀 ∈ ℤ ∧ seq 𝑁 ( + , 𝐹 ) ∈ V ) → ( ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ𝑀 ) ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) )
25 22 23 24 sylancl ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → ( ( seq 𝑁 ( + , 𝐹 ) ↾ ( ℤ𝑀 ) ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) )
26 21 25 bitr3d ( ( 𝜑𝑀 ∈ ( ℤ𝑁 ) ) → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) )
27 uztric ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ𝑀 ) ∨ 𝑀 ∈ ( ℤ𝑁 ) ) )
28 3 4 27 syl2anc ( 𝜑 → ( 𝑁 ∈ ( ℤ𝑀 ) ∨ 𝑀 ∈ ( ℤ𝑁 ) ) )
29 16 26 28 mpjaodan ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐶 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐶 ) )