| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							summo.1 | 
							⊢ 𝐹  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							summo.2 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							sumrb.4 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							sumrb.5 | 
							⊢ ( 𝜑  →  𝑁  ∈  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							sumrb.6 | 
							⊢ ( 𝜑  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sumrb.7 | 
							⊢ ( 𝜑  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 7 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑁  ∈  ℤ )  | 
						
						
							| 8 | 
							
								
							 | 
							seqex | 
							⊢ seq 𝑀 (  +  ,  𝐹 )  ∈  V  | 
						
						
							| 9 | 
							
								
							 | 
							climres | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  seq 𝑀 (  +  ,  𝐹 )  ∈  V )  →  ( ( seq 𝑀 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  ⇝  𝐶  ↔  seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							sylancl | 
							⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( seq 𝑀 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  ⇝  𝐶  ↔  seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 11 | 
							
								2
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 13 | 
							
								1 11 12
							 | 
							sumrblem | 
							⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  =  seq 𝑁 (  +  ,  𝐹 ) )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							mpidan | 
							⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( seq 𝑀 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  =  seq 𝑁 (  +  ,  𝐹 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( seq 𝑀 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑁 ) )  ⇝  𝐶  ↔  seq 𝑁 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							bitr3d | 
							⊢ ( ( 𝜑  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐶  ↔  seq 𝑁 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 17 | 
							
								2
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  | 
						
						
							| 19 | 
							
								1 17 18
							 | 
							sumrblem | 
							⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) )  →  ( seq 𝑁 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑀 ) )  =  seq 𝑀 (  +  ,  𝐹 ) )  | 
						
						
							| 20 | 
							
								5 19
							 | 
							mpidan | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑁 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑀 ) )  =  seq 𝑀 (  +  ,  𝐹 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							breq1d | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( seq 𝑁 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  𝐶  ↔  seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 22 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℤ )  | 
						
						
							| 23 | 
							
								
							 | 
							seqex | 
							⊢ seq 𝑁 (  +  ,  𝐹 )  ∈  V  | 
						
						
							| 24 | 
							
								
							 | 
							climres | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  seq 𝑁 (  +  ,  𝐹 )  ∈  V )  →  ( ( seq 𝑁 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  𝐶  ↔  seq 𝑁 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							sylancl | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( seq 𝑁 (  +  ,  𝐹 )  ↾  ( ℤ≥ ‘ 𝑀 ) )  ⇝  𝐶  ↔  seq 𝑁 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 26 | 
							
								21 25
							 | 
							bitr3d | 
							⊢ ( ( 𝜑  ∧  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐶  ↔  seq 𝑁 (  +  ,  𝐹 )  ⇝  𝐶 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							uztric | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∨  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) ) )  | 
						
						
							| 28 | 
							
								3 4 27
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ∨  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) ) )  | 
						
						
							| 29 | 
							
								16 26 28
							 | 
							mpjaodan | 
							⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 )  ⇝  𝐶  ↔  seq 𝑁 (  +  ,  𝐹 )  ⇝  𝐶 ) )  |