Metamath Proof Explorer


Theorem mpjaodan

Description: Eliminate a disjunction in a deduction. A translation of natural deduction rule \/ E ( \/ elimination), see natded . (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses jaodan.1 ( ( 𝜑𝜓 ) → 𝜒 )
jaodan.2 ( ( 𝜑𝜃 ) → 𝜒 )
jaodan.3 ( 𝜑 → ( 𝜓𝜃 ) )
Assertion mpjaodan ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 jaodan.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 jaodan.2 ( ( 𝜑𝜃 ) → 𝜒 )
3 jaodan.3 ( 𝜑 → ( 𝜓𝜃 ) )
4 1 2 jaodan ( ( 𝜑 ∧ ( 𝜓𝜃 ) ) → 𝜒 )
5 3 4 mpdan ( 𝜑𝜒 )