Metamath Proof Explorer


Theorem mpdan

Description: An inference based on modus ponens. (Contributed by NM, 23-May-1999) (Proof shortened by Wolf Lammen, 22-Nov-2012)

Ref Expression
Hypotheses mpdan.1 ( 𝜑𝜓 )
mpdan.2 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion mpdan ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 mpdan.1 ( 𝜑𝜓 )
2 mpdan.2 ( ( 𝜑𝜓 ) → 𝜒 )
3 id ( 𝜑𝜑 )
4 3 1 2 syl2anc ( 𝜑𝜒 )