| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							summo.1 | 
							⊢ 𝐹  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							summo.2 | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							summo.3 | 
							⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 4 | 
							
								
							 | 
							summolem3.4 | 
							⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝐾 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							summolem3.5 | 
							⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							summolem3.6 | 
							⊢ ( 𝜑  →  𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							summolem3.7 | 
							⊢ ( 𝜑  →  𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							addcl | 
							⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑗  ∈  ℂ )  →  ( 𝑚  +  𝑗 )  ∈  ℂ )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℂ  ∧  𝑗  ∈  ℂ ) )  →  ( 𝑚  +  𝑗 )  ∈  ℂ )  | 
						
						
							| 10 | 
							
								
							 | 
							addcom | 
							⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑗  ∈  ℂ )  →  ( 𝑚  +  𝑗 )  =  ( 𝑗  +  𝑚 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℂ  ∧  𝑗  ∈  ℂ ) )  →  ( 𝑚  +  𝑗 )  =  ( 𝑗  +  𝑚 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							addass | 
							⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑗  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( ( 𝑚  +  𝑗 )  +  𝑦 )  =  ( 𝑚  +  ( 𝑗  +  𝑦 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℂ  ∧  𝑗  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( ( 𝑚  +  𝑗 )  +  𝑦 )  =  ( 𝑚  +  ( 𝑗  +  𝑦 ) ) )  | 
						
						
							| 14 | 
							
								5
							 | 
							simpld | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 15 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eleqtrdi | 
							⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							ssidd | 
							⊢ ( 𝜑  →  ℂ  ⊆  ℂ )  | 
						
						
							| 18 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴  →  ◡ 𝑓 : 𝐴 –1-1-onto→ ( 1 ... 𝑀 ) )  | 
						
						
							| 19 | 
							
								6 18
							 | 
							syl | 
							⊢ ( 𝜑  →  ◡ 𝑓 : 𝐴 –1-1-onto→ ( 1 ... 𝑀 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							f1oco | 
							⊢ ( ( ◡ 𝑓 : 𝐴 –1-1-onto→ ( 1 ... 𝑀 )  ∧  𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 )  →  ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 ) )  | 
						
						
							| 21 | 
							
								19 7 20
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							ovex | 
							⊢ ( 1 ... 𝑁 )  ∈  V  | 
						
						
							| 23 | 
							
								22
							 | 
							f1oen | 
							⊢ ( ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 )  →  ( 1 ... 𝑁 )  ≈  ( 1 ... 𝑀 ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ≈  ( 1 ... 𝑀 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							fzfi | 
							⊢ ( 1 ... 𝑁 )  ∈  Fin  | 
						
						
							| 26 | 
							
								
							 | 
							fzfi | 
							⊢ ( 1 ... 𝑀 )  ∈  Fin  | 
						
						
							| 27 | 
							
								
							 | 
							hashen | 
							⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  ( 1 ... 𝑀 )  ∈  Fin )  →  ( ( ♯ ‘ ( 1 ... 𝑁 ) )  =  ( ♯ ‘ ( 1 ... 𝑀 ) )  ↔  ( 1 ... 𝑁 )  ≈  ( 1 ... 𝑀 ) ) )  | 
						
						
							| 28 | 
							
								25 26 27
							 | 
							mp2an | 
							⊢ ( ( ♯ ‘ ( 1 ... 𝑁 ) )  =  ( ♯ ‘ ( 1 ... 𝑀 ) )  ↔  ( 1 ... 𝑁 )  ≈  ( 1 ... 𝑀 ) )  | 
						
						
							| 29 | 
							
								24 28
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  ( ♯ ‘ ( 1 ... 𝑀 ) ) )  | 
						
						
							| 30 | 
							
								5
							 | 
							simprd | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 31 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 32 | 
							
								
							 | 
							hashfz1 | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  𝑁 )  | 
						
						
							| 33 | 
							
								30 31 32
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  𝑁 )  | 
						
						
							| 34 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 35 | 
							
								
							 | 
							hashfz1 | 
							⊢ ( 𝑀  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑀 ) )  =  𝑀 )  | 
						
						
							| 36 | 
							
								14 34 35
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝑀 ) )  =  𝑀 )  | 
						
						
							| 37 | 
							
								29 33 36
							 | 
							3eqtr3rd | 
							⊢ ( 𝜑  →  𝑀  =  𝑁 )  | 
						
						
							| 38 | 
							
								37
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 1 ... 𝑀 )  =  ( 1 ... 𝑁 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							f1oeq2d | 
							⊢ ( 𝜑  →  ( ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  ↔  ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑀 ) ) )  | 
						
						
							| 40 | 
							
								21 39
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑚  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑚 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							csbeq1d | 
							⊢ ( 𝑛  =  𝑚  →  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵  =  ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 43 | 
							
								
							 | 
							elfznn | 
							⊢ ( 𝑚  ∈  ( 1 ... 𝑀 )  →  𝑚  ∈  ℕ )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 𝑀 ) )  →  𝑚  ∈  ℕ )  | 
						
						
							| 45 | 
							
								
							 | 
							f1of | 
							⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴  →  𝑓 : ( 1 ... 𝑀 ) ⟶ 𝐴 )  | 
						
						
							| 46 | 
							
								6 45
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑓 : ( 1 ... 𝑀 ) ⟶ 𝐴 )  | 
						
						
							| 47 | 
							
								46
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑓 ‘ 𝑚 )  ∈  𝐴 )  | 
						
						
							| 48 | 
							
								2
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℂ )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℂ )  | 
						
						
							| 50 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵  | 
						
						
							| 51 | 
							
								50
							 | 
							nfel1 | 
							⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵  ∈  ℂ  | 
						
						
							| 52 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑘  =  ( 𝑓 ‘ 𝑚 )  →  𝐵  =  ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 53 | 
							
								52
							 | 
							eleq1d | 
							⊢ ( 𝑘  =  ( 𝑓 ‘ 𝑚 )  →  ( 𝐵  ∈  ℂ  ↔  ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵  ∈  ℂ ) )  | 
						
						
							| 54 | 
							
								51 53
							 | 
							rspc | 
							⊢ ( ( 𝑓 ‘ 𝑚 )  ∈  𝐴  →  ( ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℂ  →  ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵  ∈  ℂ ) )  | 
						
						
							| 55 | 
							
								47 49 54
							 | 
							sylc | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 𝑀 ) )  →  ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵  ∈  ℂ )  | 
						
						
							| 56 | 
							
								3 42 44 55
							 | 
							fvmptd3 | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑚 )  =  ⦋ ( 𝑓 ‘ 𝑚 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 57 | 
							
								56 55
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝑚 )  ∈  ℂ )  | 
						
						
							| 58 | 
							
								38
							 | 
							f1oeq2d | 
							⊢ ( 𝜑  →  ( 𝐾 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴  ↔  𝐾 : ( 1 ... 𝑁 ) –1-1-onto→ 𝐴 ) )  | 
						
						
							| 59 | 
							
								7 58
							 | 
							mpbird | 
							⊢ ( 𝜑  →  𝐾 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 )  | 
						
						
							| 60 | 
							
								
							 | 
							f1of | 
							⊢ ( 𝐾 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴  →  𝐾 : ( 1 ... 𝑀 ) ⟶ 𝐴 )  | 
						
						
							| 61 | 
							
								59 60
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐾 : ( 1 ... 𝑀 ) ⟶ 𝐴 )  | 
						
						
							| 62 | 
							
								
							 | 
							fvco3 | 
							⊢ ( ( 𝐾 : ( 1 ... 𝑀 ) ⟶ 𝐴  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  =  ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  =  ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  =  ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  | 
						
						
							| 65 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴 )  | 
						
						
							| 66 | 
							
								61
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾 ‘ 𝑖 )  ∈  𝐴 )  | 
						
						
							| 67 | 
							
								
							 | 
							f1ocnvfv2 | 
							⊢ ( ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ 𝐴  ∧  ( 𝐾 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( 𝐾 ‘ 𝑖 ) )  | 
						
						
							| 68 | 
							
								65 66 67
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑓 ‘ ( ◡ 𝑓 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( 𝐾 ‘ 𝑖 ) )  | 
						
						
							| 69 | 
							
								64 68
							 | 
							eqtr2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾 ‘ 𝑖 )  =  ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							csbeq1d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ⦋ ( 𝐾 ‘ 𝑖 )  /  𝑘 ⦌ 𝐵  =  ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 71 | 
							
								70
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  (  I  ‘ ⦋ ( 𝐾 ‘ 𝑖 )  /  𝑘 ⦌ 𝐵 )  =  (  I  ‘ ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  /  𝑘 ⦌ 𝐵 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							elfznn | 
							⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑖  ∈  ℕ )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑖  ∈  ℕ )  | 
						
						
							| 74 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  𝑖  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐾 ‘ 𝑖 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							csbeq1d | 
							⊢ ( 𝑛  =  𝑖  →  ⦋ ( 𝐾 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵  =  ⦋ ( 𝐾 ‘ 𝑖 )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 76 | 
							
								75 4
							 | 
							fvmpti | 
							⊢ ( 𝑖  ∈  ℕ  →  ( 𝐻 ‘ 𝑖 )  =  (  I  ‘ ⦋ ( 𝐾 ‘ 𝑖 )  /  𝑘 ⦌ 𝐵 ) )  | 
						
						
							| 77 | 
							
								73 76
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐻 ‘ 𝑖 )  =  (  I  ‘ ⦋ ( 𝐾 ‘ 𝑖 )  /  𝑘 ⦌ 𝐵 ) )  | 
						
						
							| 78 | 
							
								
							 | 
							f1of | 
							⊢ ( ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 )  →  ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) )  | 
						
						
							| 79 | 
							
								40 78
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ◡ 𝑓  ∘  𝐾 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  ∈  ( 1 ... 𝑀 ) )  | 
						
						
							| 81 | 
							
								
							 | 
							elfznn | 
							⊢ ( ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  ∈  ( 1 ... 𝑀 )  →  ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  ∈  ℕ )  | 
						
						
							| 82 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑛  =  ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							csbeq1d | 
							⊢ ( 𝑛  =  ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  →  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐵  =  ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  /  𝑘 ⦌ 𝐵 )  | 
						
						
							| 84 | 
							
								83 3
							 | 
							fvmpti | 
							⊢ ( ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 )  ∈  ℕ  →  ( 𝐺 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  =  (  I  ‘ ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  /  𝑘 ⦌ 𝐵 ) )  | 
						
						
							| 85 | 
							
								80 81 84
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  =  (  I  ‘ ⦋ ( 𝑓 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) )  /  𝑘 ⦌ 𝐵 ) )  | 
						
						
							| 86 | 
							
								71 77 85
							 | 
							3eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐻 ‘ 𝑖 )  =  ( 𝐺 ‘ ( ( ◡ 𝑓  ∘  𝐾 ) ‘ 𝑖 ) ) )  | 
						
						
							| 87 | 
							
								9 11 13 16 17 40 57 86
							 | 
							seqf1o | 
							⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑀 ) )  | 
						
						
							| 88 | 
							
								37
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑀 )  =  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑁 ) )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( seq 1 (  +  ,  𝐺 ) ‘ 𝑀 )  =  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑁 ) )  |