Step |
Hyp |
Ref |
Expression |
1 |
|
seqf1o.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
seqf1o.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
3 |
|
seqf1o.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
4 |
|
seqf1o.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
seqf1o.5 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑆 ) |
6 |
|
seqf1o.6 |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |
7 |
|
seqf1o.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
8 |
|
seqf1o.8 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
9 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ) |
11 |
|
f1oeq23 |
⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑀 ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) ) |
12 |
10 10 11
|
syl2anc |
⊢ ( 𝑥 = 𝑀 → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) ) |
13 |
10
|
feq2d |
⊢ ( 𝑥 = 𝑀 → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑀 → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) |
18 |
14 17
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) |
19 |
18
|
2albidv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) ) |
22 |
|
f1oeq23 |
⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑘 ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ) ) |
23 |
21 21 22
|
syl2anc |
⊢ ( 𝑥 = 𝑘 → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ) ) |
24 |
21
|
feq2d |
⊢ ( 𝑥 = 𝑘 → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) |
25 |
23 24
|
anbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) |
29 |
25 28
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ) |
30 |
29
|
2albidv |
⊢ ( 𝑥 = 𝑘 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ) |
31 |
30
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑘 + 1 ) ) ) |
33 |
|
f1oeq23 |
⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... ( 𝑘 + 1 ) ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) |
34 |
32 32 33
|
syl2anc |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ) ) |
35 |
32
|
feq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) |
36 |
34 35
|
anbi12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) |
39 |
37 38
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) |
40 |
36 39
|
imbi12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
41 |
40
|
2albidv |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
42 |
41
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
43 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ) |
44 |
|
f1oeq23 |
⊢ ( ( ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑥 ) = ( 𝑀 ... 𝑁 ) ) → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) |
45 |
43 43 44
|
syl2anc |
⊢ ( 𝑥 = 𝑁 → ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ↔ 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) |
46 |
43
|
feq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ↔ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) |
47 |
45 46
|
anbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) ↔ ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) ) |
48 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) |
50 |
48 49
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) |
51 |
47 50
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) |
52 |
51
|
2albidv |
⊢ ( 𝑥 = 𝑁 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ↔ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) |
53 |
52
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑥 ) –1-1-onto→ ( 𝑀 ... 𝑥 ) ∧ 𝑔 : ( 𝑀 ... 𝑥 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) ) |
54 |
|
f1of |
⊢ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) → 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ) |
56 |
|
elfz3 |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) |
57 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ∧ 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) → ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) = ( 𝑔 ‘ ( 𝑓 ‘ 𝑀 ) ) ) |
58 |
55 56 57
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) = ( 𝑔 ‘ ( 𝑓 ‘ 𝑀 ) ) ) |
59 |
|
ffvelrn |
⊢ ( ( 𝑓 : ( 𝑀 ... 𝑀 ) ⟶ ( 𝑀 ... 𝑀 ) ∧ 𝑀 ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ) |
60 |
54 56 59
|
syl2anr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ) |
61 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
62 |
61
|
eleq2d |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ↔ ( 𝑓 ‘ 𝑀 ) ∈ { 𝑀 } ) ) |
63 |
|
elsni |
⊢ ( ( 𝑓 ‘ 𝑀 ) ∈ { 𝑀 } → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) |
64 |
62 63
|
syl6bi |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) ) |
65 |
64
|
imp |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 ‘ 𝑀 ) ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) |
66 |
60 65
|
syldan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) |
67 |
66
|
adantrr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( 𝑓 ‘ 𝑀 ) = 𝑀 ) |
68 |
67
|
fveq2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( 𝑔 ‘ ( 𝑓 ‘ 𝑀 ) ) = ( 𝑔 ‘ 𝑀 ) ) |
69 |
58 68
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) = ( 𝑔 ‘ 𝑀 ) ) |
70 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( ( 𝑔 ∘ 𝑓 ) ‘ 𝑀 ) ) |
72 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) = ( 𝑔 ‘ 𝑀 ) ) |
73 |
72
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) = ( 𝑔 ‘ 𝑀 ) ) |
74 |
69 71 73
|
3eqtr4d |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) |
75 |
74
|
ex |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) |
76 |
75
|
alrimivv |
⊢ ( 𝑀 ∈ ℤ → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) |
77 |
76
|
a1d |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑀 ) –1-1-onto→ ( 𝑀 ... 𝑀 ) ∧ 𝑔 : ( 𝑀 ... 𝑀 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑀 ) ) ) ) |
78 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑡 → ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ↔ 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ) ) |
79 |
|
feq1 |
⊢ ( 𝑔 = 𝑠 → ( 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ↔ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) |
80 |
78 79
|
bi2anan9r |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ↔ ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) ) ) |
81 |
|
coeq1 |
⊢ ( 𝑔 = 𝑠 → ( 𝑔 ∘ 𝑓 ) = ( 𝑠 ∘ 𝑓 ) ) |
82 |
|
coeq2 |
⊢ ( 𝑓 = 𝑡 → ( 𝑠 ∘ 𝑓 ) = ( 𝑠 ∘ 𝑡 ) ) |
83 |
81 82
|
sylan9eq |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( 𝑔 ∘ 𝑓 ) = ( 𝑠 ∘ 𝑡 ) ) |
84 |
83
|
seqeq3d |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ) |
85 |
84
|
fveq1d |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) ) |
86 |
|
simpl |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → 𝑔 = 𝑠 ) |
87 |
86
|
seqeq3d |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → seq 𝑀 ( + , 𝑔 ) = seq 𝑀 ( + , 𝑠 ) ) |
88 |
87
|
fveq1d |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) |
89 |
85 88
|
eqeq12d |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ↔ ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) |
90 |
80 89
|
imbi12d |
⊢ ( ( 𝑔 = 𝑠 ∧ 𝑓 = 𝑡 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ↔ ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) ) |
91 |
90
|
cbval2vw |
⊢ ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ↔ ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) |
92 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝜑 ) |
93 |
92 1
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
94 |
92 2
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
95 |
92 3
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
96 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
97 |
92 5
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝐶 ⊆ 𝑆 ) |
98 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ) |
99 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) |
100 |
|
eqid |
⊢ ( 𝑤 ∈ ( 𝑀 ... 𝑘 ) ↦ ( 𝑓 ‘ if ( 𝑤 < ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) , 𝑤 , ( 𝑤 + 1 ) ) ) ) = ( 𝑤 ∈ ( 𝑀 ... 𝑘 ) ↦ ( 𝑓 ‘ if ( 𝑤 < ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) , 𝑤 , ( 𝑤 + 1 ) ) ) ) |
101 |
|
eqid |
⊢ ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) = ( ◡ 𝑓 ‘ ( 𝑘 + 1 ) ) |
102 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) |
103 |
102 91
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) ) |
104 |
93 94 95 96 97 98 99 100 101 103
|
seqf1olem2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) ∧ ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) |
105 |
104
|
exp31 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) → ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
106 |
91 105
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) → ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
107 |
106
|
alrimdv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) → ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
108 |
107
|
alrimdv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑠 ∀ 𝑡 ( ( 𝑡 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑠 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑠 ∘ 𝑡 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑠 ) ‘ 𝑘 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
109 |
91 108
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
110 |
109
|
expcom |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
111 |
110
|
a2d |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑘 ) –1-1-onto→ ( 𝑀 ... 𝑘 ) ∧ 𝑔 : ( 𝑀 ... 𝑘 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑘 ) ) ) → ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... ( 𝑘 + 1 ) ) –1-1-onto→ ( 𝑀 ... ( 𝑘 + 1 ) ) ∧ 𝑔 : ( 𝑀 ... ( 𝑘 + 1 ) ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ ( 𝑘 + 1 ) ) = ( seq 𝑀 ( + , 𝑔 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
112 |
20 31 42 53 77 111
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) ) |
113 |
4 112
|
mpcom |
⊢ ( 𝜑 → ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ) |
114 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑥 ) ∈ V |
115 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) |
116 |
114 115
|
fnmpti |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) Fn ( 𝑀 ... 𝑁 ) |
117 |
|
fzfi |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |
118 |
|
fnfi |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) Fn ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ Fin ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ Fin ) |
119 |
116 117 118
|
mp2an |
⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ Fin |
120 |
|
f1of |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) |
121 |
6 120
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ) |
122 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ V ) |
123 |
|
fex2 |
⊢ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ ( 𝑀 ... 𝑁 ) ∈ V ∧ ( 𝑀 ... 𝑁 ) ∈ V ) → 𝐹 ∈ V ) |
124 |
121 122 122 123
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
125 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ↔ 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) ) |
126 |
|
feq1 |
⊢ ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) → ( 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ↔ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) |
127 |
125 126
|
bi2anan9r |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ↔ ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) ) ) |
128 |
|
coeq1 |
⊢ ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝑓 ) ) |
129 |
|
coeq2 |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝑓 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) |
130 |
128 129
|
sylan9eq |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝑔 ∘ 𝑓 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) |
131 |
130
|
seqeq3d |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) = seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ) |
132 |
131
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) ) |
133 |
|
simpl |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
134 |
133
|
seqeq3d |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → seq 𝑀 ( + , 𝑔 ) = seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
135 |
134
|
fveq1d |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) |
136 |
132 135
|
eqeq12d |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ↔ ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) |
137 |
127 136
|
imbi12d |
⊢ ( ( 𝑔 = ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) ↔ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) ) |
138 |
137
|
spc2gv |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ Fin ∧ 𝐹 ∈ V ) → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) → ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) ) |
139 |
119 124 138
|
sylancr |
⊢ ( 𝜑 → ( ∀ 𝑔 ∀ 𝑓 ( ( 𝑓 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ 𝑔 : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( 𝑔 ∘ 𝑓 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝑔 ) ‘ 𝑁 ) ) → ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) ) |
140 |
113 139
|
mpd |
⊢ ( 𝜑 → ( ( 𝐹 : ( 𝑀 ... 𝑁 ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ∧ ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐶 ) → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) ) |
141 |
6 9 140
|
mp2and |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) ) |
142 |
121
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) ) |
143 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
144 |
|
fvex |
⊢ ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V |
145 |
143 115 144
|
fvmpt |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
146 |
142 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
147 |
|
fvco3 |
⊢ ( ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ ( 𝑀 ... 𝑁 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
148 |
121 147
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
149 |
146 148 8
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐻 ‘ 𝑘 ) ) |
150 |
4 149
|
seqfveq |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∘ 𝐹 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) ) |
151 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑘 ) ) |
152 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑘 ) ∈ V |
153 |
151 115 152
|
fvmpt |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
154 |
153
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
155 |
4 154
|
seqfveq |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
156 |
141 150 155
|
3eqtr3d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |