Step |
Hyp |
Ref |
Expression |
1 |
|
0fin |
⊢ ∅ ∈ Fin |
2 |
|
eleq1 |
⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → ( ( 𝑀 ... 𝑁 ) ∈ Fin ↔ ∅ ∈ Fin ) ) |
3 |
1 2
|
mpbiri |
⊢ ( ( 𝑀 ... 𝑁 ) = ∅ → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
4 |
|
fzn0 |
⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
onfin2 |
⊢ ω = ( On ∩ Fin ) |
6 |
|
inss2 |
⊢ ( On ∩ Fin ) ⊆ Fin |
7 |
5 6
|
eqsstri |
⊢ ω ⊆ Fin |
8 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
9 |
8
|
hashgf1o |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 |
10 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
|
uznn0sub |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 ) |
12 |
10 11
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 ) |
13 |
|
f1ocnvdm |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 ∧ ( ( 𝑁 + 1 ) − 𝑀 ) ∈ ℕ0 ) → ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ ω ) |
14 |
9 12 13
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ ω ) |
15 |
7 14
|
sselid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ Fin ) |
16 |
8
|
fzen2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ≈ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) |
17 |
|
enfii |
⊢ ( ( ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ∈ Fin ∧ ( 𝑀 ... 𝑁 ) ≈ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( 𝑁 + 1 ) − 𝑀 ) ) ) → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
18 |
15 16 17
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
19 |
4 18
|
sylbi |
⊢ ( ( 𝑀 ... 𝑁 ) ≠ ∅ → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
20 |
3 19
|
pm2.61ine |
⊢ ( 𝑀 ... 𝑁 ) ∈ Fin |