Metamath Proof Explorer


Theorem 0fin

Description: The empty set is finite. (Contributed by FL, 14-Jul-2008)

Ref Expression
Assertion 0fin ∅ ∈ Fin

Proof

Step Hyp Ref Expression
1 peano1 ∅ ∈ ω
2 ssid ∅ ⊆ ∅
3 ssnnfi ( ( ∅ ∈ ω ∧ ∅ ⊆ ∅ ) → ∅ ∈ Fin )
4 1 2 3 mp2an ∅ ∈ Fin