Metamath Proof Explorer
		
		
		
		Description:  Formula-building rule for two universal quantifiers (deduction form).
       (Contributed by NM, 4-Mar-1997)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypothesis | 
						2albidv.1 | 
						⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
					
				
					 | 
					Assertion | 
					2albidv | 
					⊢  ( 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 𝜓  ↔  ∀ 𝑥 ∀ 𝑦 𝜒 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2albidv.1 | 
							⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							albidv | 
							⊢ ( 𝜑  →  ( ∀ 𝑦 𝜓  ↔  ∀ 𝑦 𝜒 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							albidv | 
							⊢ ( 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 𝜓  ↔  ∀ 𝑥 ∀ 𝑦 𝜒 ) )  |