Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2albidv.1 | |- ( ph -> ( ps <-> ch ) ) | |
| Assertion | 2albidv | |- ( ph -> ( A. x A. y ps <-> A. x A. y ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2albidv.1 | |- ( ph -> ( ps <-> ch ) ) | |
| 2 | 1 | albidv | |- ( ph -> ( A. y ps <-> A. y ch ) ) | 
| 3 | 2 | albidv | |- ( ph -> ( A. x A. y ps <-> A. x A. y ch ) ) |