Metamath Proof Explorer


Theorem simprr

Description: Simplification of a conjunction. (Contributed by NM, 21-Mar-2007)

Ref Expression
Assertion simprr ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 id ( 𝜒𝜒 )
2 1 ad2antll ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜒 )