Metamath Proof Explorer


Theorem fvco3

Description: Value of a function composition. (Contributed by NM, 3-Jan-2004) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Assertion fvco3 ( ( 𝐺 : 𝐴𝐵𝐶𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ffn ( 𝐺 : 𝐴𝐵𝐺 Fn 𝐴 )
2 fvco2 ( ( 𝐺 Fn 𝐴𝐶𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺𝐶 ) ) )
3 1 2 sylan ( ( 𝐺 : 𝐴𝐵𝐶𝐴 ) → ( ( 𝐹𝐺 ) ‘ 𝐶 ) = ( 𝐹 ‘ ( 𝐺𝐶 ) ) )