Metamath Proof Explorer
		
		
		
		Description:  Value of a function composition.  Deduction form of fvco3 .
       (Contributed by Stanislas Polu, 9-Mar-2020)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						fvco3d.1 | 
						⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐵 )  | 
					
					
						 | 
						 | 
						fvco3d.2 | 
						⊢ ( 𝜑  →  𝐶  ∈  𝐴 )  | 
					
				
					 | 
					Assertion | 
					fvco3d | 
					⊢  ( 𝜑  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fvco3d.1 | 
							⊢ ( 𝜑  →  𝐺 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							fvco3d.2 | 
							⊢ ( 𝜑  →  𝐶  ∈  𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							fvco3 | 
							⊢ ( ( 𝐺 : 𝐴 ⟶ 𝐵  ∧  𝐶  ∈  𝐴 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝐶 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  |