| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fvco4i.a | 
							⊢ ∅  =  ( 𝐹 ‘ ∅ )  | 
						
						
							| 2 | 
							
								
							 | 
							fvco4i.b | 
							⊢ Fun  𝐺  | 
						
						
							| 3 | 
							
								
							 | 
							funfn | 
							⊢ ( Fun  𝐺  ↔  𝐺  Fn  dom  𝐺 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mpbi | 
							⊢ 𝐺  Fn  dom  𝐺  | 
						
						
							| 5 | 
							
								
							 | 
							fvco2 | 
							⊢ ( ( 𝐺  Fn  dom  𝐺  ∧  𝑋  ∈  dom  𝐺 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpan | 
							⊢ ( 𝑋  ∈  dom  𝐺  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							dmcoss | 
							⊢ dom  ( 𝐹  ∘  𝐺 )  ⊆  dom  𝐺  | 
						
						
							| 8 | 
							
								7
							 | 
							sseli | 
							⊢ ( 𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  →  𝑋  ∈  dom  𝐺 )  | 
						
						
							| 9 | 
							
								
							 | 
							ndmfv | 
							⊢ ( ¬  𝑋  ∈  dom  ( 𝐹  ∘  𝐺 )  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ∅ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							nsyl5 | 
							⊢ ( ¬  𝑋  ∈  dom  𝐺  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							ndmfv | 
							⊢ ( ¬  𝑋  ∈  dom  𝐺  →  ( 𝐺 ‘ 𝑋 )  =  ∅ )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							⊢ ( ¬  𝑋  ∈  dom  𝐺  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( 𝐹 ‘ ∅ ) )  | 
						
						
							| 13 | 
							
								1 10 12
							 | 
							3eqtr4a | 
							⊢ ( ¬  𝑋  ∈  dom  𝐺  →  ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							pm2.61i | 
							⊢ ( ( 𝐹  ∘  𝐺 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) )  |