Metamath Proof Explorer


Theorem dmcoss

Description: Domain of a composition. Theorem 21 of Suppes p. 63. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 and ax-12 . (Revised by TM, 31-Dec-2025)

Ref Expression
Assertion dmcoss dom ( 𝐴𝐵 ) ⊆ dom 𝐵

Proof

Step Hyp Ref Expression
1 exsimpl ( ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) → ∃ 𝑧 𝑥 𝐵 𝑧 )
2 vex 𝑥 ∈ V
3 vex 𝑦 ∈ V
4 2 3 opelco ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) )
5 breq2 ( 𝑦 = 𝑧 → ( 𝑥 𝐵 𝑦𝑥 𝐵 𝑧 ) )
6 5 cbvexvw ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑧 𝑥 𝐵 𝑧 )
7 1 4 6 3imtr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 )
8 7 eximi ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) → ∃ 𝑦𝑦 𝑥 𝐵 𝑦 )
9 5 exexw ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑦𝑦 𝑥 𝐵 𝑦 )
10 8 9 sylibr ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 )
11 2 eldm2 ( 𝑥 ∈ dom ( 𝐴𝐵 ) ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) )
12 2 eldm ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 )
13 10 11 12 3imtr4i ( 𝑥 ∈ dom ( 𝐴𝐵 ) → 𝑥 ∈ dom 𝐵 )
14 13 ssriv dom ( 𝐴𝐵 ) ⊆ dom 𝐵