| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nfe1 | 
							⊢ Ⅎ 𝑦 ∃ 𝑦 𝑥 𝐵 𝑦  | 
						
						
							| 2 | 
							
								
							 | 
							exsimpl | 
							⊢ ( ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 )  →  ∃ 𝑧 𝑥 𝐵 𝑧 )  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 5 | 
							
								3 4
							 | 
							opelco | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ∘  𝐵 )  ↔  ∃ 𝑧 ( 𝑥 𝐵 𝑧  ∧  𝑧 𝐴 𝑦 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑦  =  𝑧  →  ( 𝑥 𝐵 𝑦  ↔  𝑥 𝐵 𝑧 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							cbvexvw | 
							⊢ ( ∃ 𝑦 𝑥 𝐵 𝑦  ↔  ∃ 𝑧 𝑥 𝐵 𝑧 )  | 
						
						
							| 8 | 
							
								2 5 7
							 | 
							3imtr4i | 
							⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ∘  𝐵 )  →  ∃ 𝑦 𝑥 𝐵 𝑦 )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							exlimi | 
							⊢ ( ∃ 𝑦 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ∘  𝐵 )  →  ∃ 𝑦 𝑥 𝐵 𝑦 )  | 
						
						
							| 10 | 
							
								3
							 | 
							eldm2 | 
							⊢ ( 𝑥  ∈  dom  ( 𝐴  ∘  𝐵 )  ↔  ∃ 𝑦 〈 𝑥 ,  𝑦 〉  ∈  ( 𝐴  ∘  𝐵 ) )  | 
						
						
							| 11 | 
							
								3
							 | 
							eldm | 
							⊢ ( 𝑥  ∈  dom  𝐵  ↔  ∃ 𝑦 𝑥 𝐵 𝑦 )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							3imtr4i | 
							⊢ ( 𝑥  ∈  dom  ( 𝐴  ∘  𝐵 )  →  𝑥  ∈  dom  𝐵 )  | 
						
						
							| 13 | 
							
								12
							 | 
							ssriv | 
							⊢ dom  ( 𝐴  ∘  𝐵 )  ⊆  dom  𝐵  |