| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exsimpl |
⊢ ( ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) → ∃ 𝑧 𝑥 𝐵 𝑧 ) |
| 2 |
|
vex |
⊢ 𝑥 ∈ V |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
2 3
|
opelco |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝐵 𝑦 ↔ 𝑥 𝐵 𝑧 ) ) |
| 6 |
5
|
cbvexvw |
⊢ ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑧 𝑥 𝐵 𝑧 ) |
| 7 |
1 4 6
|
3imtr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 8 |
7
|
eximi |
⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) → ∃ 𝑦 ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 9 |
5
|
exexw |
⊢ ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑦 ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 10 |
8 9
|
sylibr |
⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 11 |
2
|
eldm2 |
⊢ ( 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) |
| 12 |
2
|
eldm |
⊢ ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 ) |
| 13 |
10 11 12
|
3imtr4i |
⊢ ( 𝑥 ∈ dom ( 𝐴 ∘ 𝐵 ) → 𝑥 ∈ dom 𝐵 ) |
| 14 |
13
|
ssriv |
⊢ dom ( 𝐴 ∘ 𝐵 ) ⊆ dom 𝐵 |