Metamath Proof Explorer


Theorem dmcoss

Description: Domain of a composition. Theorem 21 of Suppes p. 63. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmcoss dom ( 𝐴𝐵 ) ⊆ dom 𝐵

Proof

Step Hyp Ref Expression
1 nfe1 𝑦𝑦 𝑥 𝐵 𝑦
2 exsimpl ( ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) → ∃ 𝑧 𝑥 𝐵 𝑧 )
3 vex 𝑥 ∈ V
4 vex 𝑦 ∈ V
5 3 4 opelco ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧𝑧 𝐴 𝑦 ) )
6 breq2 ( 𝑦 = 𝑧 → ( 𝑥 𝐵 𝑦𝑥 𝐵 𝑧 ) )
7 6 cbvexvw ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑧 𝑥 𝐵 𝑧 )
8 2 5 7 3imtr4i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 )
9 1 8 exlimi ( ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) → ∃ 𝑦 𝑥 𝐵 𝑦 )
10 3 eldm2 ( 𝑥 ∈ dom ( 𝐴𝐵 ) ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ ( 𝐴𝐵 ) )
11 3 eldm ( 𝑥 ∈ dom 𝐵 ↔ ∃ 𝑦 𝑥 𝐵 𝑦 )
12 9 10 11 3imtr4i ( 𝑥 ∈ dom ( 𝐴𝐵 ) → 𝑥 ∈ dom 𝐵 )
13 12 ssriv dom ( 𝐴𝐵 ) ⊆ dom 𝐵