Metamath Proof Explorer


Theorem exlimi

Description: Inference associated with 19.23 . See exlimiv for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993) (Revised by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses exlimi.1 𝑥 𝜓
exlimi.2 ( 𝜑𝜓 )
Assertion exlimi ( ∃ 𝑥 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 exlimi.1 𝑥 𝜓
2 exlimi.2 ( 𝜑𝜓 )
3 1 19.23 ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )
4 3 2 mpgbi ( ∃ 𝑥 𝜑𝜓 )