Metamath Proof Explorer


Theorem dmcoss

Description: Domain of a composition. Theorem 21 of Suppes p. 63. (Contributed by NM, 19-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dmcoss domABdomB

Proof

Step Hyp Ref Expression
1 nfe1 yyxBy
2 exsimpl zxBzzAyzxBz
3 vex xV
4 vex yV
5 3 4 opelco xyABzxBzzAy
6 breq2 y=zxByxBz
7 6 cbvexvw yxByzxBz
8 2 5 7 3imtr4i xyAByxBy
9 1 8 exlimi yxyAByxBy
10 3 eldm2 xdomAByxyAB
11 3 eldm xdomByxBy
12 9 10 11 3imtr4i xdomABxdomB
13 12 ssriv domABdomB