Metamath Proof Explorer


Theorem exsimpl

Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion exsimpl xφψxφ

Proof

Step Hyp Ref Expression
1 simpl φψφ
2 1 eximi xφψxφ