Metamath Proof Explorer


Theorem ssriv

Description: Inference based on subclass definition. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis ssriv.1 xAxB
Assertion ssriv AB

Proof

Step Hyp Ref Expression
1 ssriv.1 xAxB
2 dfss2 ABxxAxB
3 2 1 mpgbir AB