Metamath Proof Explorer


Theorem ssriv

Description: Inference based on subclass definition. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis ssriv.1 ( 𝑥𝐴𝑥𝐵 )
Assertion ssriv 𝐴𝐵

Proof

Step Hyp Ref Expression
1 ssriv.1 ( 𝑥𝐴𝑥𝐵 )
2 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 2 1 mpgbir 𝐴𝐵