Metamath Proof Explorer


Theorem ssrd

Description: Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses ssrd.0 xφ
ssrd.1 _xA
ssrd.2 _xB
ssrd.3 φxAxB
Assertion ssrd φAB

Proof

Step Hyp Ref Expression
1 ssrd.0 xφ
2 ssrd.1 _xA
3 ssrd.2 _xB
4 ssrd.3 φxAxB
5 1 4 alrimi φxxAxB
6 2 3 dfss2f ABxxAxB
7 5 6 sylibr φAB