Metamath Proof Explorer


Theorem ssrdv

Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)

Ref Expression
Hypothesis ssrdv.1 φxAxB
Assertion ssrdv φAB

Proof

Step Hyp Ref Expression
1 ssrdv.1 φxAxB
2 1 alrimiv φxxAxB
3 dfss2 ABxxAxB
4 2 3 sylibr φAB