Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssrdv.1 | |- ( ph -> ( x e. A -> x e. B ) ) |
|
Assertion | ssrdv | |- ( ph -> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrdv.1 | |- ( ph -> ( x e. A -> x e. B ) ) |
|
2 | 1 | alrimiv | |- ( ph -> A. x ( x e. A -> x e. B ) ) |
3 | dfss2 | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
4 | 2 3 | sylibr | |- ( ph -> A C_ B ) |