Metamath Proof Explorer


Theorem ssrdv

Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)

Ref Expression
Hypothesis ssrdv.1
|- ( ph -> ( x e. A -> x e. B ) )
Assertion ssrdv
|- ( ph -> A C_ B )

Proof

Step Hyp Ref Expression
1 ssrdv.1
 |-  ( ph -> ( x e. A -> x e. B ) )
2 1 alrimiv
 |-  ( ph -> A. x ( x e. A -> x e. B ) )
3 dfss2
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )
4 2 3 sylibr
 |-  ( ph -> A C_ B )