Metamath Proof Explorer


Theorem dfss2

Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of TakeutiZaring p. 17. (Contributed by NM, 8-Jan-2002) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 16-May-2024)

Ref Expression
Assertion dfss2
|- ( A C_ B <-> A. x ( x e. A -> x e. B ) )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( A = ( A i^i B ) <-> A. x ( x e. A <-> x e. ( A i^i B ) ) )
2 dfss
 |-  ( A C_ B <-> A = ( A i^i B ) )
3 pm4.71
 |-  ( ( x e. A -> x e. B ) <-> ( x e. A <-> ( x e. A /\ x e. B ) ) )
4 elin
 |-  ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) )
5 4 bibi2i
 |-  ( ( x e. A <-> x e. ( A i^i B ) ) <-> ( x e. A <-> ( x e. A /\ x e. B ) ) )
6 3 5 bitr4i
 |-  ( ( x e. A -> x e. B ) <-> ( x e. A <-> x e. ( A i^i B ) ) )
7 6 albii
 |-  ( A. x ( x e. A -> x e. B ) <-> A. x ( x e. A <-> x e. ( A i^i B ) ) )
8 1 2 7 3bitr4i
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )