Metamath Proof Explorer


Theorem elin

Description: Expansion of membership in an intersection of two classes. Theorem 12 of Suppes p. 25. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion elin
|- ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. ( B i^i C ) -> A e. _V )
2 elex
 |-  ( A e. C -> A e. _V )
3 2 adantl
 |-  ( ( A e. B /\ A e. C ) -> A e. _V )
4 eleq1
 |-  ( x = y -> ( x e. B <-> y e. B ) )
5 eleq1
 |-  ( x = y -> ( x e. C <-> y e. C ) )
6 4 5 anbi12d
 |-  ( x = y -> ( ( x e. B /\ x e. C ) <-> ( y e. B /\ y e. C ) ) )
7 eleq1
 |-  ( y = A -> ( y e. B <-> A e. B ) )
8 eleq1
 |-  ( y = A -> ( y e. C <-> A e. C ) )
9 7 8 anbi12d
 |-  ( y = A -> ( ( y e. B /\ y e. C ) <-> ( A e. B /\ A e. C ) ) )
10 df-in
 |-  ( B i^i C ) = { x | ( x e. B /\ x e. C ) }
11 6 9 10 elab2gw
 |-  ( A e. _V -> ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) ) )
12 1 3 11 pm5.21nii
 |-  ( A e. ( B i^i C ) <-> ( A e. B /\ A e. C ) )