Description: Expansion of membership in an intersection of two classes. Theorem 12 of Suppes p. 25. (Contributed by NM, 29-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | elin | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) → 𝐴 ∈ V ) | |
2 | elex | ⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ V ) | |
3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ V ) |
4 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
5 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) | |
6 | 4 5 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) |
7 | df-in | ⊢ ( 𝐵 ∩ 𝐶 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶 ) } | |
8 | 6 7 | elab2g | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) ) |
9 | 1 3 8 | pm5.21nii | ⊢ ( 𝐴 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ) ) |