Metamath Proof Explorer


Theorem elin

Description: Expansion of membership in an intersection of two classes. Theorem 12 of Suppes p. 25. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion elin ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴 ∈ ( 𝐵𝐶 ) → 𝐴 ∈ V )
2 elex ( 𝐴𝐶𝐴 ∈ V )
3 2 adantl ( ( 𝐴𝐵𝐴𝐶 ) → 𝐴 ∈ V )
4 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
5 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐶𝐴𝐶 ) )
6 4 5 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝑥𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )
7 df-in ( 𝐵𝐶 ) = { 𝑥 ∣ ( 𝑥𝐵𝑥𝐶 ) }
8 6 7 elab2g ( 𝐴 ∈ V → ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) ) )
9 1 3 8 pm5.21nii ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )