Metamath Proof Explorer


Theorem dfss2OLD

Description: Obsolete version of dfss2 as of 16-May-2024. (Contributed by NM, 8-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfss2OLD
|- ( A C_ B <-> A. x ( x e. A -> x e. B ) )

Proof

Step Hyp Ref Expression
1 dfss
 |-  ( A C_ B <-> A = ( A i^i B ) )
2 df-in
 |-  ( A i^i B ) = { x | ( x e. A /\ x e. B ) }
3 2 eqeq2i
 |-  ( A = ( A i^i B ) <-> A = { x | ( x e. A /\ x e. B ) } )
4 abeq2
 |-  ( A = { x | ( x e. A /\ x e. B ) } <-> A. x ( x e. A <-> ( x e. A /\ x e. B ) ) )
5 1 3 4 3bitri
 |-  ( A C_ B <-> A. x ( x e. A <-> ( x e. A /\ x e. B ) ) )
6 pm4.71
 |-  ( ( x e. A -> x e. B ) <-> ( x e. A <-> ( x e. A /\ x e. B ) ) )
7 6 albii
 |-  ( A. x ( x e. A -> x e. B ) <-> A. x ( x e. A <-> ( x e. A /\ x e. B ) ) )
8 5 7 bitr4i
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )