Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssrdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
Assertion | ssrdv | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
3 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
4 | 2 3 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |