Metamath Proof Explorer


Theorem ssrdv

Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995)

Ref Expression
Hypothesis ssrdv.1 ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
Assertion ssrdv ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ssrdv.1 ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
4 2 3 sylibr ( 𝜑𝐴𝐵 )