Metamath Proof Explorer


Theorem nfe1

Description: The setvar x is not free in E. x ph . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Assertion nfe1 𝑥𝑥 𝜑

Proof

Step Hyp Ref Expression
1 hbe1 ( ∃ 𝑥 𝜑 → ∀ 𝑥𝑥 𝜑 )
2 1 nf5i 𝑥𝑥 𝜑