Metamath Proof Explorer


Theorem nfa1

Description: The setvar x is not free in A. x ph . (Contributed by Mario Carneiro, 11-Aug-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) Remove dependency on ax-12 . (Revised by Wolf Lammen, 12-Oct-2021)

Ref Expression
Assertion nfa1 𝑥𝑥 𝜑

Proof

Step Hyp Ref Expression
1 alex ( ∀ 𝑥 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 )
2 nfe1 𝑥𝑥 ¬ 𝜑
3 2 nfn 𝑥 ¬ ∃ 𝑥 ¬ 𝜑
4 1 3 nfxfr 𝑥𝑥 𝜑