Metamath Proof Explorer


Theorem nfa1

Description: The setvar x is not free in A. x ph . (Contributed by Mario Carneiro, 11-Aug-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) Remove dependency on ax-12 . (Revised by Wolf Lammen, 12-Oct-2021)

Ref Expression
Assertion nfa1 x x φ

Proof

Step Hyp Ref Expression
1 alex x φ ¬ x ¬ φ
2 nfe1 x x ¬ φ
3 2 nfn x ¬ x ¬ φ
4 1 3 nfxfr x x φ