Metamath Proof Explorer


Theorem nfe1

Description: The setvar x is not free in E. x ph . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Assertion nfe1
|- F/ x E. x ph

Proof

Step Hyp Ref Expression
1 hbe1
 |-  ( E. x ph -> A. x E. x ph )
2 1 nf5i
 |-  F/ x E. x ph