Description: Deduce that x is not free in ph from the definition. (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nf5i.1 | |- ( ph -> A. x ph ) |
|
Assertion | nf5i | |- F/ x ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5i.1 | |- ( ph -> A. x ph ) |
|
2 | nf5-1 | |- ( A. x ( ph -> A. x ph ) -> F/ x ph ) |
|
3 | 2 1 | mpg | |- F/ x ph |