Metamath Proof Explorer


Theorem fvco4i

Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses fvco4i.a =F
fvco4i.b FunG
Assertion fvco4i FGX=FGX

Proof

Step Hyp Ref Expression
1 fvco4i.a =F
2 fvco4i.b FunG
3 funfn FunGGFndomG
4 2 3 mpbi GFndomG
5 fvco2 GFndomGXdomGFGX=FGX
6 4 5 mpan XdomGFGX=FGX
7 dmcoss domFGdomG
8 7 sseli XdomFGXdomG
9 ndmfv ¬XdomFGFGX=
10 8 9 nsyl5 ¬XdomGFGX=
11 ndmfv ¬XdomGGX=
12 11 fveq2d ¬XdomGFGX=F
13 1 10 12 3eqtr4a ¬XdomGFGX=FGX
14 6 13 pm2.61i FGX=FGX